Augmented Reality in Citizen Science to Connect with Reality

Illustration by Mark Catesby 1731
Illustration by Mark Catesby 1731

Fables are fun ways to accept insights into our own lives. Fairy tales are enjoyable ways to inspire hope. Augmented reality games that overlay fantasy directly onto reality are a blast, plus they create a powerful lens to understand ourselves and the world. Citizen science is a lens on the world too. The intersection of augmented reality technology and citizen science could turn science fiction ideas into science non-fiction.

The potential for overlap seems great because of the similarities between citizen science activities and Pokémon Go, the augmented reality game played on mobile phones. First, the resemblance between players of Pokémon Go and centuries old natural historians run pretty deep. Natural historians, today and in the past, have been obsessed with finding biodiversity, the variety of life on Earth. Children of the 21st century seek to find the variety of Nintendo creatures, let’s call them Pokéversity. “Gotta Catch ‘Em All,” the motto of the Pokémon series, is not different from the silent mantra, “one more bird,” resounding in the minds of birdwatchers keeping life-lists.

pokemonGo_pinkachuSecond, as mimics of wild animals, each Pokémon species is unique and has a backstory of its natural history. The Pokémon mascot, Pikachu, is a rotund rodent that dwells in forests. A Pikachu has yellow fur, long ears with black tips, rosey circles on its pouched cheeks, and tails shaped like lightening bolts.

Third, the official inventory, Pokedex, provides details about each Pokémon, its traits, behaviors, and life cycle, much like official species accounts in the Birds of North America. Plus, like John James Audubon, Pokémon fans have created illustrated books to help identify the little monsters, like the Field Guide to Kanto by Kari Fry, an illustrated natural history of Pokémon creatures.

Fourth, conservation biologists and environmental educators who add engagement goal to citizen science envy the capacity of Pokémon Go to stimulate the curiosity of children. When in danger, a Pikachu will release an electric charge from its glands. With traits like that, how can real wildlife compete for public attention? According to one study, by age 8, kids can identify far more species of Pokémon than common native wildlife. The researchers found that young children have enormous capacity for learning about flora and fauna, but that conservation biologists – or whoever we might assign this responsibility – are not inspiring kids to learn about real, living and breathing things. The study results motivated the creation of Phylomon, a trading card game with real animals instead of Nintendo creatures.

Despite the overlap, advocates for nature-based experiences are still steps behind Nintendo. It is Pokémon Go that is getting kids (of all ages) to leave their rooms, use their legs, and pursue and capture a menagerie of fantasy critters like Pikachu and Squirtle, Zubats, Paras, and Caterpies. Pokémon Go rouses people out of their homes and into city centers, historical places, and nature centers. As Pokémon Go and citizen science activities kindle the spirit of natural historians, both tap the human desire to search and discover, rely on the thrill of using gadgets to see what is otherwise invisible, and instill feelings of belonging that comes from being part of something bigger. The fantasy world of Pokémon Go, overlaid onto our real world, ignites human imagination. Could using augmented reality spark human imagination about the natural world?

One way citizen science can leverage augmented reality technology is recruitment. Pokémon Go gets people out and about where they might notice more about their real-world environment.  Players are encountering injured wildlife and delivering to rehabilitation centers. Morgan Jackson created the hashtag #PokeBlitz, modelled after BioBlitz which are citizen science events where people identify and catalog as many species as possible in a given place. Similarly, Kayte Smith created the hashtag #PokemonGoIRL (In the Real World). Both #PokeBlitz and #PokemonGoIRL are a foot in the door for more people to enter citizen science projects, like those with iNaturalist, the app most frequently used for BioBlitzes.pokemonGo_tweets1

Another area where citizen science can use augmented reality technology is with protocols for volunteer data collection. Many projects want observations from specific places, and it is possible to direct people to those locations with an augmented reality app. For example, FotoQuest is a gamified citizen science project focused on documenting land-use change by gathering geo-located photographs taken by volunteers. The app guides people to exact points where they take photos guided by augmented reality technology to position their camera. For example, in Austria, there has not been proper inventory of wetlands, and FotoQuest volunteers are making this possible.

Another area where citizen science can make use of augmented reality technology is data visualization. Imagine augmented reality apps allowing you to enter landscapes that are graphs of data. For example, imagine taking projections of sea level rise and making it possible to stand 30 miles from the coast and look at your feet and see via an augmented reality app whether or not your feet, ankles, or knees would be wet in that location in 30 years. Augmented reality apps could help us see the many features of our world that we cannot otherwise see, like radio, cell phone and wi-fi waves which are outside the visible spectrum. Architecture of Radio is an augmented reality app that allows you to visualize radio waves and cellular signals and other digital signatures.

In the next #CitSciChat, we’ll explore ways that citizen science projects can use augmented reality technology.  Join the conversation on Twitter during the next #CitSciChat on 3 August at Noon ET. During this 1-hour Q&A session, we’ll hear from the following guest panelists:

Kate Jones (@ProfKateJones) from UCL

Karen James (@kejames) from Mount Desert Island Biological Laboratory

Lila Higgins (@lilamayhiggins) from Natural History Museum of Los Angeles County

Scott Loarie (@loarie) of iNaturalist (@iNaturalist)

Morgan Jackson (@BioInFocus) from University of Guelph, host of @BreakingBio

Lea Shell (@VeganBugLady) from NCSU @YourWild_Life

If you don’t use Twitter, you can follow the stream here: http://www.carencooper.com/lets-talk.html

 

Categories: Citizen Science, Gaming, Nature & Outdoors, Project Profile

Tags: ,

About the Author

Caren Cooper

Caren Cooper

Dr. Caren Cooper is an associate professor in Forestry and Environmental Resources at NCSU in the Chancellor's Faculty Excellence program on Leadership in Public Science, and assistant head of the Biodiversity Research Lab at the North Carolina Museum of Natural Sciences. She is co-editor-in-chief of Citizen Science: Theory & Practice, a journal of the Citizen Science Association. She has authored over 50 scientific papers, co-developed software to automate metrics of incubation rhythms, and co-created NestWatch, CamClickr, Celebrate Urban Birds, YardMap, and Sparrow Swap. She is a blogger with SciStarter, and author of Citizen Science: How Ordinary People are Changingthe Face of Discovery. She likes to propel herself on one wheel, two wheel, and eight wheel devices. Follow her @CoopSciScoop. She hosts periodic Twitter discussions with panelists at #CitSCiChat and runs @IamCitSci, a Twitter account with rotating weekly guest hosts.